Seminars
A central goal of artificial intelligence (AI) is to develop algorithms and software that can solve complex problems as a human would. AI is poised to have a significant impact on making discoveries in biomedical big data given the availability of powerful algorithms, visualization methods, and high-performance computing. We introduce here the Exploratory Modeling for Extracting Relationships using Genetic and Evolutionary Navigation Techniques (EMERGENT) algorithm as an AI approach for the large-scale genetic analysis of common human diseases. EMERGENT builds models of genetic variation…
The limited battery capacity of sensor nodes has become the biggest impediment to wireless sensor network (WSN) applications over the years. Recent breakthroughs in wireless energy transfer, based on rechargeable lithium batteries, provide a promising application of mobile vehicles. These mobile vehicles act as mobile chargers to transfer energy wirelessly to static sensors in an efficient way. In this talk, we discuss some of our recent results on several charging and coverage problems involving multiple mobile chargers. In collaborative mobile charging, a fixed charging location,…
In this talk I will discuss research advances that led to practical tools for automatically proving program termination and related properties, e.g. liveness. Practical applications include automatically proving device driver correctness, and pharmaceutical research.
Motivated by the need to secure critical infrastructure against sensor attacks, in this talk I will focus on a problem known as "secure state estimation”. It consists of estimating the state of a dynamical system when a subset of its sensors is arbitrarily corrupted by an adversary. Although of critical importance, this problem is combinatorial in nature since the subset of attacked sensors in unknown. Previous work in this area can be classified into two broad categories. The first category is based on numerical optimization techniques. These techniques are well suited to handle the…
Multi- and many-core processors commonly found in server-class systems are now increasingly popular in embedded platforms. Many of these processors feature hardware virtualization capabilities, such as the ARM Cortex A15, and x86 processors with Intel VT-x or AMD-V support. Hardware virtualization offers opportunities to partition physical resources, including processor cores, memory and I/O devices amongst guest virtual machines. For mixed criticality embedded systems it is possible to partition services with different timing and safety criticality levels across separate virtual machines…