Hierarchical Abstractions of Hybrid Systems


Hybrid systems provide a theoretical foundation for the modeling, analysis, and design of embedded systems. Hybrid systems naturally combine discrete-event and continuous-time systems in a manner that can capture software logic, physical dynamics, and communication protocols, in a unified modeling framework. The wide applicability of hybrid systems has inspired a great deal of research from both control theory and theoretical computer science. Despite the great success of hybrid systems as a model, the applicability of state-of-the-art analysis and design techniques for hybrid systems has been limited to examples of small size due to complexity. The research and educational agenda of the proposed research focuses on developing the theoretical foundations for the hierarchical decomposition of hybrid systems at various levels of abstraction. The long term goal of the research agenda will address the fundamental problem of given a class of hybrid models, and a class of properties that must be preserved, extract modeling abstractions that preserve the properties of interest. Achieving this goal will consist of first developing robust notions of bi-simulation for purely continuous systems, and then unifying the continuous and discrete notions in a manner that is consistent with the dynamics of hybrid systems.