The tremendous technological convergence of microfabrication technology, wireless communication technology, and low-power circuitry has opened the possibility of widespread use of microfabricated implantable wireless microsystems. A typical operational mode for these microsystems is to transduce a physiological parameter relevant to a disease state of interest, and wirelessly communicate this parameter external to the body to guide therapy. For chronic disease states, long-term, permanent sensors are of interest; while for acute disease states, biodegradable wireless microsystems may be of interest. Two microsystem examples, permanent pressure sensors for chronic monitoring of patients with congestive heart failure, and biodegradable pressure sensors for acute monitoring of patients with transient conditions, are given.
Mark G. Allen received the B.A. degree in chemistry, the B.S.E. degree in chemical engineering, and the B.S.E. degree in electrical engineering from the University of Pennsylvania, Philadelphia, and the S.M. and Ph.D. (1989) degrees from Massachusetts Institute of Technology, Cambridge. In 1989 he joined the faculty of the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, ultimately holding the rank of Regents’ Professor and the J.M. Pettit Professorship in Microelectronics, as well as a joint appointment in the School of Chemical and Biomolecular Engineering. In 2013 he left Georgia Tech to become the Alfred Fitler Moore Professor of Electrical and Systems Engineering and Scientific Director of the Singh Nanotechnology Center at the University of Pennsylvania in Philadelphia, PA. His research interests are in the development and the application of new micro- and nanofabrication technologies, as well as MEMS. He was Editor-in-Chief of the Journal of Micromechanics and Microengineering from 2008-2013, co-chair of the IEEE MEMS Conference in 1996, co-chair of the Power MEMS conference in 2012, and will co-chair the 2016 Solid State Sensors Conference. He is co-founder of multiple companies, including Cardiomems and Axion Biosystems, and is a Fellow of the IEEE.