It is well-known that hardware implementation can outperform the software implementation of the same application, including security primitives such as encryption, by up to several magnitudes. However, hardware implementation may also make security primitives vulnerable despite their mathematical soundness. In this talk, we will discuss the role of hardware in cybersecurity.
First, we will use the finite state machine (FSM) model to demonstrate that the systems built with today's design flow and tools are vulnerable against a simple random walk attack. We further show that a malicious designer can embed Hardware Trojan Horse (HTH) into the system to gain unauthorized control of the system. We then describe a practical circuit level technique to guarantee the trustworthiness of the circuit implementation of a given FSM.
Second, we describe our recent work on physical unclonable function (PUF), a unique feature embedded in the chip during fabrication process. PUF has many promising applications in security and trust such as device authentication and secret key generation and storage. We will focus on the following questions: how to push the amount of the PUF information we can extract to the theoretical upper bound; how to ensure that the PUF information is random (and thus secure against attacks); how coding, including error correction coding, can impact the hardware efficiency when implementing a PUF.
Finally, we will show very briefly a couple of projects on hardware-software co-design in building security and trust to demonstrate the great promise that hardware can bring to cyber security.
Dr. Gang Qu is an Associate Professor in the Department of Electrical and Computer Engineering and the Institute for Systems Research at the University of Maryland, College Park. He is the co-director of the embedded system research lab and the wireless sensor lab. His current research interests are on VLSI design automation and wireless sensor networks, with special focus on security and energy efficiency. He has published more than 100 journal articles and conference papers in these fields with best paper awards in MobiCom (2001) and ASAP (2006). Dr. Qu is currently on the editorial boards of IEEE Transactions on Computers, IEEE Embedded Systems Letters, and Integration, the VLSI Journal.